Accidental Megastructure
INTRODUCTION
—Dirk van den Heuvel (4/32)

AN ACCIDENTAL MEGASTRUCTURE
—Benjamin H. Bratton (6/32)

SPATIAL GRAPHS OF AVOIDANCE?
—Femke Herregraven (8/32)

THE MAGIC OF THE STRUCTURE: THE SPEELHUIS THEATRE AND CUBE HOUSES BY PIET BLOM
—Ellen Smit (10/32)

THE TOTAL ORGANIZATION OF LIFE/CONSTANTINOS DOXIADIS
—M. Christine Boyer (12/32)

NODES AND NETWORKS—Dirk van den Heuvel and Victor M. Sanz (14/32)

SOMETHING NOTED ON A SKETCH WITH ARROWS
—Laurent Stalder (24/32)

LIFE IN THE INFOSPHERE?
—Richard Vijgen (26/32)

HABITAT: OR THE DISRUPTIVE POWER OF A SITUATED NOTION
—Tom Avermaete (28/32)

Total Space Workshops (30/32) / Colophon (31/32)
To start

The post-war decades are considered formative in the emergence of new technologies and new spatial systems that transformed the urban landscape. The post-war decades are considered formative in the emergence of new technologies and new spatial systems that transformed the urban landscape. The post-war decades are considered formative in the emergence of new technologies and new spatial systems that transformed the urban landscape.
I propose The Stack as a way that we might map political geography, but also for how we understand the technologies that are making that geography. Planetary-scale computation takes different forms at different scales—energy and mineral sourcing and grids, subterranean cloud infrastructure, urban software and public service privatization; massive universal addressing systems; interfaces drawn by the augmentation of the hand, of the eye, or dissolved into objects; users both over-outlined by self-quantification and also exploded by the arrival of legions of sensors, algorithms, and robots. Instead of seeing all of these as a hodgepodge of different species of computing, spinning out on their own at different scales and tempos, we should see them as forming a coherent and interdependent whole. These technologies align, layer by layer, into something like a vast, if also incomplete, pervasive if also irregular, software and hardware Stack.

To be clear, this figure of The Stack both does and does not exist as such; it is both an idea and a thing; it is a machine that serves as a schema as much as it is a schema of machines. It lets us see that all these different machines are parts of a greater machine, and perhaps the diagrammatic image of a totality that such a perspective provides would, as theories of totality have before, make the composition of alternatives—including new sovereignties and new forms of governance—both more legible and more effective. As the shape of political geography and the architecture of planetary-scale computation as a collective megastructure, this machine not only results from some event, or constitutional or political residue of contradiction that arises to address systems design.... Stack, we see not one of multiple and incoherent, but one which are interfacial imposed landscapes interwoven Cloud. These geometries both draw and draw on the Stack, and in doing existing geographies with at once.... Each individual entity, its own range of possible use, its neighbours, and in some layers is presented as tech. Each is described in terms of both how it resolves the emergent accidental megastructure of The Stack into one and how the essential accident of each layer, and the combined whole, points toward very different kind of geopolitical relations and geopolitical systems, perhaps especially those determined not by today's technology but by whatever technological regime will come after planetary-scale computation.

As a model, The Stack is simultaneously a portrait of the system we have but perhaps do not recognise, and an antecedent of a future territory, and with both at hand, we hope to prototype the alien cosmopolitanisms these engender for us and suggest to us....

This accidental megastructure that is also a 'State,' is master plan, revolutionary order. It is the accumulation of regimes, some of these are super-small, small, and others are state structures, and both draw and draw on of The Stack, and in doing existing geographies with at once.... Each individual entity, its own range of possible use, its neighbours, and in some layers is presented as tech. Each is described in terms of both how it resolves the emergent accidental megastructure of The Stack into one and how the essential accident of each layer, and the combined whole, points toward very different kind of geopolitical relations and geopolitical systems, perhaps especially those determined not by today's technology but by whatever technological regime will come after planetary-scale computation.
Finance has for decades been inscribing voids onto the Earth’s surface that enable a ‘privilege of disappearing’ for financial elites while hosting infrastructures aimed at outsmarting both time and space. The utilisation of geographic properties by finance, coupled with the wish for transcending them, merge together in geographies of avoidance.

The more abstract and virtual that finance seems to become, the larger the physical base it requires to function. An immense material world is necessary to create this illusion of an ‘inmaterial’ digital financial world. Geographies of avoidance point towards the crisis of representation under which global finance operates—tax havens are just one part of a convoluted, multi-layered, global architecture of places, institutions, legislation, regulation, and information networks.

In this utterly complex, scattered and withdrawn global structure, multinationals, wealthy individuals and traders can seemingly be anywhere and nowhere at the same time, making them the ultimate beneficiaries of globalisation. Within this global structure the most opaque void is that of offshore finance, which currently translates an estimated wealth of between 31 and 32 trillion US dollars. The properties of this void—tax minimisation, asset management, security, and secrecy—refuse to be mapped and monitored as a whole. Capital and accountability disappear in this geographically fragmented legislative financial vacuum, which operates under the logic of ‘you can’t measure’. Paradoxically, disappearing is not ‘free floating’ nature of its anchorage in highly profitable points. Cloaking devices in a constellation of such as special economic zones, data havens, tax-free storages, is prone to have an future as global finance on land taking off-short New financial utopias prototyped to escape the curse of being are financial markets. is pushing the physical geography still pre—becoming faster than the name of trading speed, however planned: now being constructed around server points—relative to es—on the earth’s surface. sea and, as a result, oceans the planetary computer of trading. When trading the laws of geophysics, sculpted by the geometry Global finance is dissolving the earth’s surface—and it does its logic can penetrate of life when anything in the world can be turned into properties that can be recombined, interpreted and valued in financial terms, from personal debts, to endangered species, carbon trading, or catastrophe bonds. Finance’s key capability is turning everything it owns into a derivative this also implies that everything can be owned by someone else, and be relocated anywhere else.

Geographies of avoidance reside in the blending of this non-locality and extreme-locality. Finance might seem to happen elsewhere but is, through its logic, fused with anything else in our material world. It is there and not there at the same time, switching itself off and on like a flickering light.

Femke Herregraven (2016), Sprawling Swamps, digital installation. Horizon Resolute, Toxic Vomit, Chronic Wound, Empty Cache, Twin Ruft, Swamp of Forked Tongues, Breeding Tribunal for Nonhumans, Truth Dye, Group Imagination. Bytheraism is a series of fictional infrastructures dispersed within the cracks of the contemporary global geography that operate on a technological, legal and social level. Located on swamps, vær, sea, and shores, these infrastructures simultaneously question the notion of ‘value’ as well as the binary presumption of land and water, and demand new ontologies to frame these unstable terrains. The dynamic nature of certain matter itself—and therefore the infrastructural landscape itself—leads to a role of infrastructures, whether local, physical or digital. When territories become so destabilised that they drift into the sea, it is from this ambiguous condition that Sprawling Swamps underpin abstraction, regression, gossip and empathy as new forms of value.
THE MAGIC OF THE STRUCTURE:
THE SPEELHUIS THEATRE
AND CUBE HOUSES
BY PIET BLOM
—Ellen Smit

The Piet Blom archives contain numerous design drawings based on geometric systems. The geometric figures — square, triangle, circle — produce patterns that, in theory at least, can be extended endlessly. On the sheets presented here, Blom drew a single comprehensive structure, suggesting the simultaneous representation of the second and third dimensions, in which colour fulfils both a structuring and visual function.

Most of Blom’s fascinating abstract schemes are drawn on transparent paper, first outlined in pencil, then traced over in ink, and finally coloured in places with a felt pen. Blom arranged the composition by drawing an underlay of orthogonal and diagonal support lines, which establish the basic pattern for the structure to be designed: a structure of pivoted cubes and voids left by the omission of cubes.

Although these abstract visualizations might not immediately suggest so, they do represent a concrete building in Helmond: the Speelhuis (‘Playhouse’) surrounded by dwellings (1972-1978). The 1:500 drawings are based on the length of the diagonal line that connects the opposite corners of one side of a cube — 9.60 metres — as indicated below the drawing. On each sheet, Blom then drew various horizontal sections of the design: the three columns of the concrete structure, the triangular and hexagonal plans of the upper floors, and the yellow star-shaped voids that result from the omission of a cube. Overlaid over one another on the transparent sheets, the drawings, identical in scale, allow one to visualize the structure on many levels at the same time.

In his notes on the Speelhuis theatre, Blom writes that he strives for optimal penetration, both spatial and social, between the theatre and dwellings, between residents, and between the nearby city centre and the theatre. The aim to achieve the highest possible density of housing supports optimal spatial and social integration. The cube of the individual house forms the smallest cell of a larger and endless living organism with reciprocal relationships. The yellow stars on the drawing indicate the points where daylight pours into the structure, an important theme in view of the high density of housing and the desire to give residents the greatest possible views in various directions. The how Blom considered the structure on numerous levels — construction, dimensions, and arrangement of cubes — with respect to the metaphor of dwellings are designed to patterns in which public and dwelling, are closely interlinked one another as if these abstract diagrams just reflect the relations between published such drawings periodically and the popular ones. As such, the drawings broad theme of the twentieth century: the quest to find a synthesis between rational, objective knowledge and instinctive and individual perception through the suggestion that abstract forms can also move us.

4 P. Blom, the Speelhuis Theatre and Cube Houses, c. 1974. Blom drew the roofs of the theatre with some of the surrounding 188 houses. The star-shaped void for admitting daylight is created by omitting one cube. Source: Het Nieuwe Instituut, Rotterdam, Blom, P. / Archive (BLOM), inv. nr. BLOM137
5 P. Blom, view from above, at scale 1:500, c. 1975. The perspectival effect is created by the composition and optical illusion. Source: Het Nieuwe Instituut, Rotterdam, Blom, P. / Archive (BLOM), inv. nr. BLOM139.
6 P. Blom, grid of support lines for the design, c. 1975. Source: Het Nieuwe Instituut, Rotterdam, Blom, P. / Archive (BLOM), inv. nr. BLOM139.
7 P. Blom, horizontal sections of ground floor and upper floors at scale 1:500, c. 1975. Source: Het Nieuwe Instituut, Rotterdam, Blom, P. / Archive (BLOM), inv. nr. BLOM139.

This article is based on a study of the drawing in Dutch Structuralism, funded by the Netherlands Organisation of Scientific Research.
The total model of these three nested sets offered "a frame for every type of work, from simple concepts to the development of the Anthropocosmos Model had one hundred million parts." With data so organised and coordinated into a three-dimensional grid, Doxiadis believed that Anthropose was quite able to project, for the next sixty to one hundred years, all the problems that human settlements would confront and, over the next ten-year intervals, list the problems that had to be solved immediately.

2. Constantinos Aristotle Doxiadis (CAD) Pursuit of an Attainable Ideal, Ekistics 41, number 247, June 1976, 238–239;
3. CAD, Order in our Thinking: the need for a total approach to the anthropocosmos, Ekistics 34, 200 (July, 1973), 43–46, 44;
4. CAD, Action for a better scientific approach to the subject of human settlements: the anthropocosmos model, Ekistics 38, 229 (December, 1974), 405–412;
5. CAD, Order in our thinking, 46;

M. Christine Boyer

The Athens Center of Ekistics, or better yet its principal, the architect Constantinos Doxiadis, was intent on data-basing the world by focusing on every human settlement, at every scale and in every time period. Central to this information gathering was how to visualise, organise, and cros-reference the massive amount of data that the centre collected on human settlements.

In the early 1950s, Doxiadis began to design the Ekistics grid using the five categories of human settlements: Anthropose, Nature, Skills, Society, and Networks, into which he introduced the notion of "scale"—from units as small as a bed for one night and as large as the entire surface of the planet.

Developing a system of two-dimensional grids allowed Doxiadis to classify all Ekistics knowledge in a unified way. The horizontal axis represented the logarithmic scale of human settlements, from man to the whole earth, while the vertical axis covered the five categories of human settlements and the disciplines dealing with them—such as economics, sociology, and political science. The grid encompassed the developing and developed world, the individual and the mass, the natural and the man-made, the informal and the planned. It could be used to compare a community to an entire range of problems in similar sized settlements, or to similar problems as evidenced by settlements of other sizes.

In 1974 an expanded version of the Ekistics grid was presented taking into consideration the interrelationships of elements to each other and to the component of time, income, feasibility, and desirability. Doxiadis looked at how the Anthropose could not understand space. The total comprehensive model relationships, included, and connected to the issue third dimension is looked at, imagined, Anthropocosmos began with two-dimensional Population Scale and the first figure shows interrelationships of while the second that have created the Anthropos naturally over planned. It explains static or dynamic satisfaction, taking into political, administrative, affects. By now the fifth and sixty eight important, in sixty six thousand units of space and human settlement. This included how the Anthropos measured, the cosmos.

In the Illustrated Model of 1974 Doxiadis sees as a base: The Ekistic the Ekistic Territorial Scale. The three hundred possible these two dimensions, figure records the forces settlement type—whether time, or was deliberately whether the settlement was. The third figure deals with account all economic, social, technological, or cultural elements had two hundred ant components, resulting relationships differentiated of a time scale, and evaluated in light of basic concerns and by the criteria of desirability and feasibility. In short, the developing system of the Anthropocosmos Model had one hundred million parts.
Flexible Space™

—Dirk van den Heuvel and Victor M. Sanz

Perhaps unsurprisingly, one of the outcomes of the Total Space workshops and parallel archival research concerned the rather tight links between very specific job assignments and the development of building concepts that can be described as 'computer architecture' before the computer fully penetrated architectural design practice. These commissions invariably pertained to knowledge institutions such as universities and research centres, as well as data processing companies, most notably from finance and banking. The vast research centre for Siemens in Munich, that was developed by the Van den Broek and Bakema office from 1971 onward, was described as a 'computer city' by the press. The sketches and plans show an obsession with the creation of a modular fabric or matrix of interconnected units as a spatially coherent pattern that would allow for relentless processes of growth and change.

Another striking example is the new headquarters and administration building for the Dutch AMRO bank, which included a full-blown computer centre (1970–1972), just south of Amsterdam in the vicinity of Schiphol airport. The computer facilities and their central place in the data-processing structure of the bank called for new security systems and a complete new climate installation concept, which resulted in a typology that rendered the computer room an empty sanctuary in the centre of the building.

For both projects the office developed spatial concepts for maximum flexibility and ease of organization of the flows of people, goods and information, including various control mechanisms. Zoning and containment of the spaces is crucial 'communication-level' to the installation technique. So-called 'space boxes' of transparent and coloured perspex were developed as architectural models to communicate with the clients what sort of 3D diagrammatic stratification was possible.

An early example of accommodating 'growth and change' is the competition entry for the Bochum university campus of 1962. Here, a me-

NODES AND NETWORKS: SOME WORKS OF VAN DEN BROEK AND BAKEMA

transforms the German complex of interconnected and education facilities to meet the demands of the new post-war knowledge economy.
Ideas competition for the design of Bochum University, 1962.

Office of Van den Broek and Bakema. Ideas competition for the design of Bochum University, 1962. Explanatory text and diagrams. Source: Archive of Broekbakema Architects, project number 1333.

Office of Van den Broek and Bakema. Ideas competition for the design of Bochum University, 1962. 'Aerial' view of the model. Source: Archive of Broekbakema Architects, project number 1333.

Office of Van den Broek and Bakema. Ideas competition for the design of Bochum University, 1962. View of the model. Source: Archive of Broekbakema Architects, project number 1333.
Siemens headquarters in Perlach, Munich, 1971

'J.B. Bakema, Siemens headquarters in Perlach, Munich, 1971. Studies of the layout and furniture of the bürolandschaft and other workplaces. Source: Het Nieuwe Instituut, Rotterdam, Bakema, J.B. / Archive (BAKE), inv. nr. BAKE150.'

'Office of Van den Broek and Bakema. Siemens headquarters in Munich, 1971. The different layers of the 'spacebox' model. Source: Het Nieuwe Instituut, Rotterdam, Architectenbureau Van den Broek en Bakema / Archive (BROX), inv. nr. BROX1772.'

Computer centre of AMRO bank in Amstelveen, 1970–72

In the post-war period, the arrow acquired a central role as a technique of representation in architecture. Its history is, of course, much longer. The first occurrence can be found in Forest de Bélidor's Traité d'Hydraulique of 1737, where it was used to illustrate the movement and direction of water in a mill. Its introduction in the field of architecture can be dated back to the beginning of the 19th Century, where it often represented flows of cold or warm air, as well as of water in technical publications. At the same time, it began to be used to map non-fluid entities, such as the movement of people: Eugène Emmanuel Viollet-le-Duc (1873) represented the movement of carriages with arrows, and Christine Frederick used them to optimise the movement of the housewife in ergonomic studies (1919).

In the inter-war period, Bruno Taut employed the arrow to trace the movements in his own home (1927), Le Corbusier in the Palais des Soviets (1930) to distinguish the different flows of people inside the building, Alvar Aalto to indicate that of the steam in the Paimio Sanatorium (1933), and Richard Buckminster Fuller to map the turbulence of the wind in and around the Dymaxion House (1945). Whether it be those of liquids, people, things, or even elements, the arrow first served to represent movement that was too volatile, ephemeral or fragile to be otherwise visible or legible.

Whereas examples in this period are limited, following the Second World War the arrow began to populate not only the sketches or isolated drawings of a few protagonists, but also a wide variety of publications. It can be found in the United States in the work of Louis Kahn, especially his famous Plan for Midtown Philadelphia (1953), as well as in the urban studies of Alison and Peter Smithson—be it in their movie of their famous competition Hauptstadt Berlin (1957-58) or in their Road Studies for London (1959). The whole body of work of James Stirling is rich with arrows from his early Corbusian projects and up to his later postmodern work. Similarly, in the Netherlands, invisible relationships, both visually and physically, were represented with arrows. As in the case of the Arnhemmer Orphanage (1960) or the Lijnbaan in Rotterdam (1953), arrows help to represent invisible relationships between people and buildings, both visually and socially—what the arrow represents is architecture's potential to perform specific tasks. The arrows in such drawings are as much a medium of representation as they are a design tool: in giving legible form to virtual movements they allow for the planning and organisation of an environment traversed by a relentless set of flows. Fundamental shift in the conception of architecture in the post-war period: from form to process, from building to program, from space to environment. Arrows, therefore, not only represent movement in architecture but can also be seen to create it.
Each time that we check the weather on our cellphone, glance at our smart watches, or adjust our connected thermostat, we briefly interact with the physical objects that connect our physical reality to the ‘infosphere’, a man-made technological ecosystem which we increasingly depend on to survive in the digital age. In most parts of the world, we are completely surrounded by an invisible system of radio signals coming from cell towers, satellites and wireless access points. We live, quite literally, inside information.

Unlike the infrastructure of the industrial age, with its railroads, factories and highways, the infrastructure of the digital age is mostly unseeable. Our most tactile interactions with this planetary system are through the touch screens of our devices—an experience set to disappear as connected homes, augmented reality spectacles, and voice controlled assistants render these conventional interfaces more and more redundant. As a result, our window on the digital world is beginning to feel more like a new, auxiliary sense and less like a piece of equipment. While this might be good news in terms of accessibility, it also makes it very difficult to assess what you might be seeing and interacting with. This technological layer, with all of its properties, designed intentions, ideologies, and limitations is still there—it's just that you can't see it.

Visualisation as a counterstrategy

While it makes commercial sense to remove all ‘barriers’, all friction between the user and the platform, it does not necessarily lead to individual empowerment nor to a better understanding of the world and a more active role in it. In my work I use visualisation to probe, explore, and question the role of abstract and invisible technology in modern digital life.

The augmented reality application Architecture of Radio (2015) reverses the ambient nature of the ‘infosphere’. A screen hides the technological application shows cell towers and all around you, communication, navigation that are within position.2 Moving you to focus on both its properties.

Looking ‘through’ the visible world and reveals landscape behind it. The digital signals from Wi-Fi routers that are alongside the communication and observation satellites range of your current the screen around allows individual signals to see and distance from you. The interface is deliberately buttons to click or swipe, be picked up and moved around like a picture frame. Like many to be transparent, on-screen rather than what instead of focusing on of Radio focuses on the content. As digital more embedded in our increasingly understand- manifestations themselves while their inner invisible.

Visualising the invisible, abstract, and hidden world of digital technology might help us to relate to a force that is shaping the 21st Century, and thereby elevate us from users and consumers to participants.

1 The infosphere refers to an interdependent environment, like a biosphere, that is populated by informational entities. While an example of the sphere of information is cyberspace, infospheres are not limited to purely online environments.

2 The app shows the digital world around us as a 360-degree, site-specific data visualisation. Based on your GPS location, the app visualises the cell towers and Wi-Fi routers around you pulled from a global open source database that contains 7 million cell towers and over 19 million Wi-Fi routers. It calculates the positions of hundreds of satellites and shows the digital world around you.

It is often held that ‘habitat’, an idea that was imported into architectural culture from the world of geography, became one of the most important theoretical frameworks within which to re-conceive housing. Such a definition, however, disregards the key function of the concept of ‘habitat’ in post-war architectural discourse: to re-define the human being. To be more precise, the concept functioned as a lever that dislocated and repositioned the human subject from the rationalist functional city—based on numerical surveys and early practices of ‘datafication’—into an environment built on socio-ecological notions.

This disrupting function of ‘habitat’ explains why the concept became so pervasive and omnipresent in a large variety of post-war cultural and professional discourses. After all, re-imagining the human subject did not take place without struggle; quite on the contrary, the concept functioned as a tool for architects working in North Africa to criticise the sheer imposition of non-indigenous dwelling typologies on the indigenous dwelling environment. In several articles Brazilians in the north east of the country, and the south east, Lina Bo and Pietro Maria Bardi between 1950 and 1954 in Sao Paulo, constructed in an exclusively Brazilian cultural life platform to scrutinise—in popularity—modern and its relationship to its surroundings. In several articles, these communities of the Atlantic in post-war Brazil for the greatest architects working in North Africa to criticise the sheer imposition of non-indigenous dwelling typologies as well as foreign construction techniques by the French government. In a special issue of L’Architecture d’Aujourd’hui, Georges Candilis, Pierre Mas, Pierre Kennedy and Shadrach Woods made a plea for an architecture that was more situated in the local cultures of dwelling and making, so that the context (man and his needs) and the container (the dwelling and his prolongation) under environmental influence are organically joined to their social and productive environment.

Eireann, for instance, a group of engaged young members—including Jaap Bakema, Aldo van Eyck, Alison and Peter Smithson, John Voelcker, Sandy van Ginkel and Hans Hovens-Greve—used the notion of ‘habitat’ to illustrate the weak function of the technological culture in the different parts of the country, and 1954 in Doorn, with J. B. Bakema, A. van Eyck, P. Smithson, and 1950 Brazil. In the context of Brazilian cultural life platform to scrutinise—in popularity—modern and its relationship to its surroundings. In several articles, these communities of the Atlantic in post-war Brazil for the greatest architects working in North Africa to criticise the sheer imposition of non-indigenous dwelling typologies as well as foreign construction techniques by the French government. In a special issue of L’Architecture d’Aujourd’hui, Georges Candilis, Pierre Mas, Pierre Kennedy and Shadrach Woods made a plea for an architecture that was more situated in the local cultures of dwelling and making, so that the context (man and his needs) and the container (the dwelling and his prolongation) under environmental influence are organically joined to their social and productive environment.
This insert is based on two research workshops organised by the Jaap Bakema Study Centre in 2015 at Het Nieuwe Instituut in Rotterdam. The workshop series is part of the programme of the Jaap Bakema Study Centre and, in particular, an ongoing research project on Structuralism. The first public presentation of this research was in the exhibition Structuralism—An Installation in Four Acts: Education, Ideals, Building, the City (Autumn 2014). It’s focus is on historical developments in Dutch architecture, and the aims to explore current developments in the digital realm—platforms and networks, spaces of exchange, and the environment, systems, and habitat. On June 9, 2015, Christine Boyer’s public lecture Open Societies, Common Spaces built on the themes explored at the workshop by addressing the historical background and dilemmas of the open society in relation to issues involving architecture and planning.

On November 2, 2015, a second workshop was held on June 8, 2015 and featured contributions from Laurent Stalder, Christine Boyer, Tom Avermaete on the themes of the environment, systems, and habitat. On June 9, Christine Boyer’s public lecture Open Societies, Common Spaces built on the themes explored at the workshop by addressing the historical background and dilemmas of the open society in relation to issues involving architecture and planning.

On November 2, 2015, a second workshop was held on June 8, 2015 and featured contributions from Laurent Stalder, Christine Boyer, Tom Avermaete on the themes of the environment, systems, and habitat. On June 9, Christine Boyer’s public lecture Open Societies, Common Spaces built on the themes explored at the workshop by addressing the historical background and dilemmas of the open society in relation to issues involving architecture and planning.

On November 2, 2015, a second workshop was held on June 8, 2015 and featured contributions from Laurent Stalder, Christine Boyer, Tom Avermaete on the themes of the environment, systems, and habitat. On June 9, Christine Boyer’s public lecture Open Societies, Common Spaces built on the themes explored at the workshop by addressing the historical background and dilemmas of the open society in relation to issues involving architecture and planning.
Resistance is Futile™

upgrade your plan